Dihedral group D_4

1. Let $D_4 = \langle \rho, t \mid \rho^4 = e, t^2 = e, tpt = \rho^{-1} \rangle$ be the dihedral group.

 (a) Write the Cayley table for D_4. You may use the fact that $\{e, \rho, \rho^2, \rho^3, t, \rho t, \rho^2 t, \rho^3 t\}$ are all distinct elements of D_4.

 Table 1: D_4

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>ρ</th>
<th>ρ^2</th>
<th>ρ^3</th>
<th>t</th>
<th>ρt</th>
<th>$\rho^2 t$</th>
<th>$\rho^3 t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>ρ</td>
<td>ρ^2</td>
<td>ρ^3</td>
<td>t</td>
<td>ρt</td>
<td>$\rho^2 t$</td>
<td>$\rho^3 t$</td>
</tr>
<tr>
<td>ρ</td>
<td>ρ</td>
<td>ρ^2</td>
<td>ρ^3</td>
<td>e</td>
<td>t</td>
<td>ρt</td>
<td>$\rho^2 t$</td>
<td>$\rho^3 t$</td>
</tr>
<tr>
<td>ρ^2</td>
<td>ρ^2</td>
<td>ρ^3</td>
<td>e</td>
<td>ρ</td>
<td>ρ^2</td>
<td>ρ^3</td>
<td>t</td>
<td>tp</td>
</tr>
<tr>
<td>ρ^3</td>
<td>ρ^3</td>
<td>e</td>
<td>ρ</td>
<td>ρ^2</td>
<td>ρ^3</td>
<td>t</td>
<td>tp</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>tp</td>
<td>t^2</td>
<td>t^3</td>
<td>e</td>
<td>ρ</td>
<td>ρ^2</td>
<td>ρ^3</td>
</tr>
<tr>
<td>tp</td>
<td>tp</td>
<td>t^2</td>
<td>t^3</td>
<td>t</td>
<td>ρ</td>
<td>ρ^2</td>
<td>ρ^3</td>
<td>e</td>
</tr>
<tr>
<td>t^2</td>
<td>t^2</td>
<td>t^3</td>
<td>t</td>
<td>tp</td>
<td>ρ</td>
<td>ρ^2</td>
<td>ρ^3</td>
<td>e</td>
</tr>
<tr>
<td>t^3</td>
<td>t^3</td>
<td>t</td>
<td>tp</td>
<td>ρ^2</td>
<td>ρ^3</td>
<td>e</td>
<td>t</td>
<td></td>
</tr>
</tbody>
</table>

 (b) Find the subgroup generated by $\{t^2\}$. **Done in class.**

 (c) Find the subgroup generated by $\{t, t^2\}$.

 First notice that the subgroup generated by $\{t, t^2\}$, must contain $t^2 = e$ and also $tt^2 = \rho^2$.

 Next, make the Cayley table of the elements $\{e, t, t^2, \rho^2\}$ and check if it is closed under operation and inverses.

 Table 2: Subgroup $\langle t, t^2 \rangle$ of D_4

 | $\langle t, t^2 \rangle$ | e | t | t^2 | ρ^2 |
 |---|---|---|---|
 | e | e | t | t^2 | ρ^2 |
 | t | t | ρ^2 | t^2 | |
 | t^2 | t^2 | ρ^2 | e | t |
 | ρ^2 | ρ^2 | t^2 | t |

 Therefore $S = \{e, t, t^2, \rho^2\}$ is a nonempty subset of D_4 closed under operation and inverses. So S is a subgroup of D_4 by one of the subgroup theorems ("two step subgroup theorem").

 (d) Find the order of each of the elements of D_4.

 From the Table for D_4 it follows that the orders of the elements of D_4 are as follows (i.e. these are the smallest positive integers such that $a^n = e$):

 $|e| = 1$, $|\rho| = 4$, $|\rho^2| = 2$, $|\rho^3| = 4$, $|t| = 2$, $|t\rho| = 2$, $|t\rho^2| = 2$, $|t\rho^3| = 2$.

Isomorphisms

2. Prove that the map $f : (\mathbb{Z}_{10}, +) \to (\mathbb{Z}_{10}, +)$ defined by $f(x) = x + 2 \pmod{10}$ is not an isomorphism of groups.

- One way: $f(x)$ is NOT group isomorphism, since
 $f(x + y) = 2 + x + y$, but $f(x) + f(y) = 2 + x + 2 + y$, and
 $2 + x + y \neq 4 + x + y = 2 + x + 2 + y$ in \mathbb{Z}_{10}.
 Therefore the property $f(ab) = f(a)f(b)$ does not hold.

- Another way: For each isomorphism of groups $f : G \to G'$, $f(e_G) = e_{G'}$. However $f(0) = 2 \neq 0$, hence f is not isomorphism.

3. Prove that the map $f : (\mathbb{Z}_{10}, +) \to (\mathbb{Z}_{10}, +)$ defined by $f(x) = 3x \pmod{10}$ is an isomorphism of groups.

- Isomorphisms between cyclic groups $G = \langle a \rangle$ and $G' = \langle b \rangle$ of the same order can be defined by
 - sending a, the generator of group G to a generator of G' and
 - defining $f(a^i) := (f(a))^i$.
- $(\mathbb{Z}_{10}, +)$ is a cyclic group of order 10 with a generator 1.
- Generators of $(\mathbb{Z}_{10}, +)$ are all integers $\{k \mid 1 \leq k \leq 9, \gcd(k, 10) = 1\}$
- $f(1) = 3$ which is also a generator in $(\mathbb{Z}_{10}, +)$
- $f(a^i) = (f(a))^i$ in additive notation with generator 1, is written as
 $f(i \cdot 1) = i \cdot f(1)$, which is the same as $f(x) = x \cdot 3$ or $f(x) = 3x$.
- Therefore f is an isomorphism of the above cyclic groups.

4. Let $G = \langle a \rangle$ be a cyclic group of order 10. Prove that the map $f : G \to G$ defined by $f(a) = a^3$ and $f(a^i) = a^{3i}$ is a group isomorphism.

- Isomorphisms between cyclic groups $G = \langle a \rangle$ and $G' = \langle b \rangle$ of the same order can be defined by
 - sending a, the generator of group G to a generator of G' and
 - defining $f(a^i) := (f(a))^i$.
- $G = \langle a \rangle$ is a cyclic group of order 10 with a generator a.
- Generators of $\langle a \rangle$ are all $\{a^t \mid 1 \leq t \leq 9, \gcd(t, 10) = 1\}$
- $f(a) = a^3$ which is also a generator of $G = \langle a \rangle$
- From $f(a^i) = a^{3i}$ we have $f(a^i) = a^{3i} = (a^3)^i = (f(a))^i$
- Therefore f is an isomorphism of the above cyclic groups.
5. Let $G = \langle a \rangle$ be a cyclic group of order 10. Prove that the map $f : G \to G$ defined by $f(a) = a^4$ and $f(a^i) = a^{4i}$ is not group isomorphism.

- **(One way)** Isomorphism must send generator to a generator (see previous problems) but a^4 is not generator the cyclic group of order 10, $G = \langle a \rangle$ since $\gcd(4, 10) = 2 \neq 1$.
- **(Another way)** Orders of a and $f(a)$ must be the same if f is an isomorphism. But $|a| = 10$ and $|f(a)| = |a^{\gcd(4,10)}| = |a^2| = \frac{10}{2} = 5$. Hence $|a| \neq |f(a)|$. Hence f is not an isomorphism.
- **(Third way)** The map f is not one-to-one.

 Proof: $f(a) = a^4$ and $f(a^7) = a^{14} = a^4$ but $a \neq a^7$ in a cyclic group of order 10 (all elements $\{e, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9\}$ are distinct).

6. Let $G = \langle a \rangle$ be a cyclic group of order 10. Describe all automorphisms of G.

- Hint: $f(a)$ must be a generator of $G = \langle a \rangle$.

7. Describe 3 different group isomorphisms $(\mathbb{Z}_{10}, +) \to (\mathbb{Z}_{10}, +)$. *(Make sure that you explain why they are isomorphisms!)*

-

8. Are the groups S_3 and $U(9)$ isomorphic? Prove your statement.

- No.

 - Theorem: Let $G \cong G'$ be isomorphic groups. Then G is abelian if and only if G' is abelian.

 - S_3 is non-abelian and $U(9)$ is abelian.

9. Are the groups S_3 and D_3 isomorphic? Prove your statement.

- Make a table for D_3
- Make a table for S_3
- Define a map: $f(\rho) = (123)$, $f(\rho^2) = (132)$, $f(\rho^3) = (1)$, $f(t) = (12)$, $f(t\rho) = (12)(123) = (23)$, $f(t\rho^2) = (12)(132) = (13)$
- Check that the Cayley multiplication tables are the same under this identification (function).

10. Are the groups $U(5)$ and $U(10)$ isomorphic? Prove your statement.

- $U(5) = \{1, 2, 3, 4\}$, integers relatively prime to 5 and between 1 and 4.
- $2^1 = 2, 2^2 = 4, 2^3 = 3, 2^4 = 1$ implies that 2 generates all of $U(5)$
- $U(5)$ is cyclic group of order 4, therefore isomorphic to $(\mathbb{Z}_4, +)$.
- $U(10) = \{1, 3, 7, 9\}$, integers relatively prime to 10 and between 1 and 9.
• $3^1 = 3, \ 3^2 = 9, 3^3 = 7, \ 3^4 = 1$ implies that 3 generates all of $U(10)$
• $U(10)$ is cyclic group of order 4, therefore isomorphic to $(\mathbb{Z}_4, +)$.
• Both $U(5)$ and $U(10)$ are isomorphic to $(\mathbb{Z}_4, +)$, therefore they are isomorphic.
11. Let $G = D_4$ Let $D_4 = \langle \rho, t \mid \rho^4 = e, t^2 = e, tpt = \rho^{-1} \rangle$ be the dihedral group with the distinct elements: \{e, \rho, \rho^2, \rho^3, t, \rho t, t\rho^2, t\rho^3\}. Let $H = \langle t \rangle$ be the subgroup generated by t.

(a) What are the elements of H?
- $H = \{t, t^2 = e\} = \{e, t\}$

(b) What is the size of H?
- $|H| = |\{e, t\}| = 2$

(c) What is the size of each of the left cosets of H in G.
- $|aH| = |H| = 2$

(d) Find all left cosets of H in G.
- $eH = \{e, t\} = H$
- $tH = \{te, tt\} = \{t, e\} = H$
- $\rho H = \{\rho e, \rho t\} = \{\rho, t\rho^3\}$ (use $\rho t = t\rho^3$ for this and other cosets)
- $\rho^2 H = \{\rho^2 e, \rho^2 t\} = \{\rho^2, t\rho^2\}$
- $\rho^3 H = \{\rho^3 e, \rho^3 t\} = \{\rho^3, t\rho\}$
- $t\rho H = \{t\rho e, t\rho t\} = \{t\rho, \rho^3\}$
- $t\rho^2 H = \{t\rho^2 e, t\rho^2 t\} = \{t\rho^2, \rho^2\}$
- $t\rho^3 H = \{t\rho^3 e, t\rho^3 t\} = \{t\rho^3, \rho\}$
- Notice: $eH = tH = H$, $\rho H = t\rho^3 H$, $\rho^2 H = t\rho^2 H$, $\rho^3 H = t\rho H$

(e) How many left cosets of H in G are there?
- $\# \text{ of (distinct) cosets of } H \text{ in } G = [G : H] = |G|/|H| = 8/2 = 4$
- Also notice that we computed above 4 distinct cosets.

(f) What is the size of each of the right cosets of H in G.
- $|Ha| = |H| = 2$

(g) Find all right cosets of H in G.
- $He = \{e, t\} = H$
- $Ht = \{et, tt\} = \{t, e\} = H$
- $H\rho = \{e\rho, t\rho\} = \{\rho, t\rho\}$
- $H\rho^2 = \{e\rho^2, t\rho^2\} = \{\rho^2, t\rho^2\}$
- $H\rho^3 = \{e\rho^3, t\rho^3\} = \{\rho^3, t\rho^3\}$
- $Ht\rho = \{et\rho, t\rho t\} = \{t\rho, \rho\}$
- $Ht\rho^2 = \{et\rho^2, t\rho^2 t\} = \{t\rho^2, \rho^2\}$
- $Ht\rho^3 = \{et\rho^3, t\rho^3 t\} = \{t\rho^3, \rho^3\}$
• Notice: \(He = Ht = H, \quad H\rho = Ht\rho, \quad H\rho^2 = Ht\rho^2, \quad H\rho^3 = Ht\rho^3 \)

(h) How many right cosets of \(H \) in \(G \) are there?

• The number of (distinct) right cosets of \(H \) in \(G \) is \([G : H] = |G|/|H| = 8/2 = 4 \)

• Also notice that we computed above 4 distinct right cosets.

(i) Are the left cosets of \(H \) in \(G \) the same as the right cosets of \(H \) in \(G \)?

• Some are the same but some are not:

 • \(eH = He, \quad tH = Ht, \quad \rho^2H = H\rho^2, \quad t\rho^2H = Ht\rho^2 \).

 • \(\rho H \neq H\rho, \quad \rho^3 H \neq H\rho^3, \quad t\rho H \neq Ht\rho, \quad t\rho^3 H \neq Ht\rho^3 \).
12. Let $G = \mathbb{Z}_{12}$ be the group under addition ($mod 12$). Let $H = \langle 3 \rangle$ be the subgroup generated by 3.

(a) What are the elements of H?
 - $H = \{0, 3, 6, 9\}$

(b) What is the size of H?
 - $|H| = |\{0, 3, 6, 9\}| = 4$

(c) What is the size of each of the left cosets of H in G.
 - $|a + H| = |H| = 4$ (Notice additive notation!)

(d) Find all left cosets of H in G.
 - $0 + H = \{0, 3, 6, 9\}$
 - $1 + H = \{1, 4, 7, 10\}$
 - $2 + H = \{2, 5, 8, 11\}$
 - $3 + H = \{3, 6, 9, 0\} = 0 + H = 6 + H = 9 + H$
 - $4 + H = \{4, 7, 10, 1\} = 1 + H = 7 + H = 10 + H$
 - $5 + H = \{5, 8, 11, 2\} = 2 + H = 8 + H = 11 + H$

(e) How many left cosets of H in G are there?
 - # of (distinct) left cosets of H in $G = [G : H] = |G|/|H| = 12/4 = 3$
 - Also notice that we computed above 3 distinct left cosets.

(f) What is the size of each of the right cosets of H in G.
 - $|H + a| = |H| = 4$ (Notice additive notation!)

(g) Find all right cosets of H in G.
 - $H + 0 = \{0, 3, 6, 9\} = H + 3 = H + 6 = H + 9$
 - $H + 1 = \{1, 4, 7, 10\} = H + 4 = H + 7 = H + 10$
 - $H + 2 = \{2, 5, 8, 11\} = H + 5 = H + 8 = H + 11$

(h) How many right cosets of H in G are there?
 - # of (distinct) right cosets of H in $G = [G : H] = |G|/|H| = 12/4 = 3$
 - Also notice that we computed above 3 distinct right cosets.

(i) Are the left cosets of H in G the same as the right cosets of H in G?
 - YES.
 - $0 + H = H + 0, \ 1 + H = H + 1, \ 2 + H = H + 2$, and also $a + H = H + a$ for all $a \in G = \mathbb{Z}_{12}$.

13. Let $G = S_4$ be the permutation group on four elements \{1, 2, 3, 4\}. Let $H = \langle (1342) \rangle$ be the subgroup generated by the permutation $\alpha = (1342)$.

(a) What are the elements of H?
 \[H = \{(1342), (14)(32), (1243), (1)\} \]

(b) What is the size of H?
 \[|H| = |\{(1342), (14)(32), (1243), (1)\}| = 4 \]

(c) What is the size of each of the left cosets of H in G.
 \[|aH| = |H| = 4 \]

(d) Find all left cosets of H in G.
 \[(1)H = \{(1342), (14)(32), (1243), (1)\} = (1342)H = (14)(32)H = (1243)H = H \]
 \[(12)H = \{(12)(1342), (12)(14)(32), (12)(1243), (12)(1)\} = \{(134), (1423), (243), (12)\} \]
 etc.

(e) How many distinct left cosets of H in G are there?
 \[\# \text{ of (distinct) left cosets of } H \text{ in } G = [G : H] = |G|/|H| = 24/4 = 6 \]

(f) What is the size of each of the right cosets of H in G.
 \[|Ha| = |H| = 4 \]

(g) Find all right cosets of H in G.

(h) How many right cosets of H in G are there?

(i) Are the left cosets of H in G the same as the right cosets of of H in G?
14. Let $G = U(12)$ be the group of invertible integers ($mod\ 12$).
Let $H = \langle 5 \rangle$ be the subgroup generated by the element (5).

(a) What are the elements of H?

(b) What is the size of H?

(c) What is the size of each of the left cosets of H in G.

(d) Find all left cosets of H in G.

(e) How many left cosets of H in G are there?

(f) What is the size of each of the right cosets of H in G.

(g) Find all right cosets of H in G.

(h) How many right cosets of H in G are there?

(i) Are the left cosets of H in G the same as the right cosets of H in G?
15. Let $G = A_4$ be the group of even permutations on four elements $\{1, 2, 3, 4\}$. Let $H = \langle (134) \rangle$ be the subgroup generated by the permutation $\alpha = (134)$.

(a) What are the elements of H?

(b) What is the size of H?

(c) What is the size of each of the left cosets of H in G.

(d) Find all left cosets of H in G.

(e) How many left cosets of H in G are there?

(f) What is the size of each of the right cosets of H in G.

(g) Find all right cosets of H in G.

(h) How many right cosets of H in G are there?

(i) Are the left cosets of H in G the same as the right cosets of H in G?
16. Let G be the group generated by the permutations $\alpha = (1\ 2\ 3\ 4)$ and $\beta = (5\ 6\ 7\ 8\ 9\ 10)$ in S_{10}. Let $H = \langle \alpha\beta \rangle$ be the subgroup of G generated by the permutation $\alpha\beta = (1\ 2\ 3\ 4)(5\ 6\ 7\ 8\ 9\ 10)$.

(a) What are the elements of H?

(b) What is the size of H?

(c) What is the size of each of the left cosets of H in G.

(d) Find all left cosets of H in G.

(e) How many left cosets of H in G are there?

(f) What is the size of each of the right cosets of H in G.

(g) Find all right cosets of H in G.

(h) How many right cosets of H in G are there?

(i) Are the left cosets of H in G the same as the right cosets of H in G?