MODULI OF PRINCIPAL BUNDLES FOR A 2-GROUP:

12 February, 2021
jt with Eric Berry Apurva Nakade
Dan Berwick-Evans Emma Phillips
Laura Murray

Plan for the talk

1) Some motivation: Dijkgraaf-Witten theory

2) Definitions: 2-groups & their principal bundles

3) Construction of a the Freed-Quinn line bundle.

§1. DIJKGRAAF-WITTEN THEORY:
Associated to a compact group G and a 3-cocycle $\alpha \in Z^3(G;U(1))$
we define a 3d TQFT T "Lagrangian"

- Chern-Simons theory for G simple, simply connected
- Dijkgraaf-Witten theory for G finite.

Data of a TQFT:

- to each closed 2-manifold X $\mapsto T(X)$ a vector space $\emptyset \mapsto \mathbb{C}$

- to each 3-manifold N with boundary $X_{\text{in}} \sqcup X_{\text{out}}$ $\mapsto T(N): T(X_{\text{in}}) \rightarrow T(X_{\text{out}})$

a linear map.

$\emptyset \quad \emptyset$

+ compositibilities
Physicists construct this data from \((G, \alpha)\) using path-integrals:

\[
M \leadsto E_M(G, \alpha) - \text{space of fields } \Theta \text{ on } M
\]

\[
d\mu_M - \text{measure on } M
\]

\[
S_X - \text{action on } M
\]

\[
\mapsto T(M) = \int d\mu_M(\Theta) e^{i\alpha S_X(\Theta)}
\]

"integrate" = "pushforward"

Result can be a number, vector space, sheaf, etc...

\[\square\] **Problem:** \(d\mu_M\) might not exist.

Special case: \(G\) finite, \(X\) a surface.

\[E_X = \{\text{equivalence classes of (flat) principal } G\text{-bundles}\} \text{ on } X\]

\[= \text{Fun}(\star//T_t(X), \star//G) / G\]

\[\square\] \(E_X\) is a finite set!

\[\sum_{C_x} \text{ is a finite sum!}\]

Define: \(T(X) := \text{space of sections of a certain } G\text{-equivariant line bundle } L \text{ on}\)

\[\text{Fun}(\star//T_t(X), \star//G)\]

\[\square\] \(L\) is called the Freed-Quinn line bundle

Construction of \(L\):

- To write down a line bundle, we need to glue a

\[
\text{functor } \text{Fun}(\star//T_t(X), \star//G) \longrightarrow \star//\text{U}(1).
\]
Inside \(\text{Fun}(\pi_1(X), \ast \to \mathbb{G}) \), we have a full, skeletal subcategory

\[
\underbrace{\ast \to \text{Aut}(g)}_{[g] \in \mathcal{C}_x}
\]

and it's enough to specify the functor there.

So we need to give functors

\[
\ast \overset{\text{Aut}(g)}{\longrightarrow} \ast \overset{\text{UC}(1)}{\longrightarrow}, \quad \text{equiv. group homomorphisms}
\]

\[
f_g : \text{Aut}(g) \longrightarrow \text{UC}(1).
\]

Recall that \(g : \pi_1(X) \longrightarrow \mathbb{G} \), and \(\text{Aut}(g) = \{ t \in \mathbb{G} \mid t g t^{-1} = g \} \)

* given \(t : \mathbb{P}_g \longrightarrow \mathbb{P}_g \) , we define a principal \(\mathbb{G} \)-bundle

on \(X \times S^1 \) by taking \(\mathbb{P}_g \times [0,1] \) and gluing \(\mathbb{P}_g \times \{0\} \) and \(\mathbb{P}_g \times \{1\} \) via \(t \).

\[\Rightarrow \text{we obtain } g_t : X \times S^1 \longrightarrow \mathbb{B} \mathbb{G}. \]

* define \(f_g (t) := \int_{X \times S^1} g_t \ast \alpha \in \text{UC}(1). \)

\[\Rightarrow \text{we thus obtain the line bundle } \mathcal{L}, \text{ classified by a } \]

2-cocycle obtained from \(\alpha \) via "transgression".

* One goal of this talk: provide a geometric/categorical

construction of the total space of \(\mathcal{L} \), starting with

the data of \((G, \alpha) \).

* Strategy: Starting from the data of \((G, \alpha) \), we construct

a "2-group" \(\mathcal{G} \).
• We study the moduli space \(M \) of "principal \(G \)-bundles" and observe that it defines a \(G \)-equivariant fibration \(M \) \[
\downarrow \\
\text{Bun}_G^k(X)
\]
• We impose an equivalence relation on \(M \) and show that the resulting quotient space is the total space of the Freed-Quinn line bundle.

82. 2-Groups

Definition. A weak 2-group \(G \) is a monoidal groupoid in which all objects and morphisms admit \(\otimes \)-inverses.

Example: Let \(H \) be any group.

1. Define \(H \) to be the 2-group with objects \(* \) and \(* \), only identity morphisms, and tensor product
 \[g \otimes h \to g \otimes h. \]

 The associator \((g \otimes h) \otimes k \to g \otimes (h \otimes k) \) must be

 \[\text{id}_{g \otimes h \otimes k}. \]

2. Define \(* \) to be the 2-group with object \(* \),

 morphisms \(\text{Hom}(*,*) = H \).

 We want the tensor structure to be given by

 - \(* \otimes * = * \)
 - \(h \otimes k = hk \in H \)

 In order for this to work out, \(H \) must be abelian.
Example: Fix G a finite group

$$\alpha \in Z^3(G; \text{ucr}) \quad \alpha \text{ is cocycle.}$$

$$\alpha : G \times G \times G \rightarrow \text{ucr}$$

Then define G^\cdot to be the category with

- objects $g \in G$
- morphisms $\text{Hom}_G(g, h) = \begin{cases} \emptyset & g \neq h \\ \text{ucr} & g = h \end{cases}$

with $g \xrightarrow{\alpha} g \xrightarrow{b} g$

Define monoidal structure on G^\cdot:

- on objects $g \cdot h = gh$
- on morphisms:
 $$\alpha_{g,h} : g \cdot h \rightarrow g \cdot h$$
 $$\alpha_{g,h} \in \text{Hom}_G(gh, gh)$$
- unit object 1
- associator:
 $$\alpha((g \cdot h) \cdot k) \xrightarrow{\sim} g \cdot (h \cdot k)$$
 $$\alpha(g, h, k) \cdot 1$$

Pentagon axiom: given g, h, k, l

$$(g \cdot h) \cdot (k \cdot l) \xrightarrow{\alpha(g, h, k, l)} g \cdot (h \cdot (k \cdot l))$$

$$
\begin{array}{ccc}
\alpha(g, h, k, l) & \xrightarrow{\sim} & g \cdot (h \cdot (k \cdot l)) \\
\alpha(g, h, k, l) & \xrightarrow{\sim} & g \cdot (h \cdot (k \cdot l)) \\
\alpha(g, h, k, l) & \xrightarrow{\sim} & g \cdot (h \cdot (k \cdot l)) \\
\alpha(g, h, k, l) & \xrightarrow{\sim} & g \cdot (h \cdot (k \cdot l)) \\
\end{array}
$$
\[\alpha(gh,k,l) \alpha(g,hk,l) \alpha(g,h,k) = 1 \]

This is exactly the 3-cocycle condition.

Fact: if \(\alpha' = \alpha \circ \beta \) for \(\beta \) a 2-cocycle, then \((G, \alpha') \) & \((G, \alpha)\) give equivalent 2-groups.

So WLOG we can assume \(\alpha \) is normalised:

- \(\alpha(g,1,k) = 1 \) \(\forall g,k \).

\[\Rightarrow \alpha(g,h,k) = 1 \text{ whenever } g,h, \text{ or } k = 1. \]

Theorem [Sinh, Baez-Lauda]

All essentially finite 2-groups arise in basically this way:

More precisely, any 2-group \(G \) with finitely many isomorphism classes of objects is determined by the data of:

- \(G \) a finite group
- \(A \) a \(G \)-module (we took the abelian group \(UC(1) \) with trivial \(G \)-action)
- a normalised 3-cocycle \(\alpha \in Z^3(G; A) \).

The 2-group \(G \) defined by \((G,A,\alpha)\) fits into a SES:

\[1 \rightarrow \mathbb{Z}/A \rightarrow \mathbb{Z} \rightarrow G \rightarrow 1 \]

- it is a central extension \(\iff \) \(A \) is a trivial \(G \)-module.

(e.g. in our \(UC(1) \)-example)

Recall: Central extensions of \(G \) by \(UC(1) \) are classified by \(H^2(G; UC(1)) \).

Analogously: central extensions of \(G \) by \(\mathbb{Z}/UC(1) \) are
§3. PRINCIPAL BUNDLES TDR \(E = (G, \alpha) \)

Warm-up: Fix \(G, H \) finite 2-groups with underlying finite groups \(G, H \).

A homomorphism \(\varphi: G \rightarrow H \) should be a weak-monoidal functor:

- on objects: \(\varphi_0: G \rightarrow H \)
- monoidal structure \(\mu(g, h): \varphi_0(g) \varphi_0(h) \xrightarrow{\sim} \varphi_0(gh) \)

\(H \) skeletal \(\Rightarrow \varphi_0(g) \varphi_0(h) = \varphi_0(gh) \) so \(\varphi_0 \) is a homomorphism

and \(\mu: G \times G \rightarrow \mathcal{U}(1) \) provides a family of isomorphisms manifesting the homomorphism structure.

Principle: When we lift from the group setting to the 2-group setting, we require all the usual data to satisfy all the usual equations,

AND we require a family of elements in \(\mathcal{U}(1) \) demonstrating that these equations hold.

Recall: A (flat) principal \(G \)-bundle is determined by a group homomorphism

\[\varphi: \pi_1(X) \rightarrow G \]

\(\therefore \) a flat principal \(G \)-bundle is determined by a pair:

\[(g, \varphi) : \overset{\circ}{\varphi}: \pi_1(X) \rightarrow G \]

\overset{\circ}{\varphi}: \pi_1(X) \times \pi_1(X) \rightarrow \mathcal{U}(1) \]
compatibility condition:

\[g(a, b) \cdot g(c) \xrightarrow{\alpha(g(a), g(b), g(c))} g(a) \cdot (g(b) \cdot g(c)) \]

\[g(a, b) \cdot g(c) \xrightarrow{g(a, b, c)} g(a \cdot b \cdot c) \xrightarrow{g(a, b, c)} g(a) \cdot g(b) \cdot g(c) \]

\[\Rightarrow \alpha(g(a), g(b), g(c)) = g(a, b, c) \cdot g(a, b, c) \]

\[\Rightarrow g^* \alpha = \frac{1}{d\gamma}. \]

- An isomorphism of flat \(G \)-bundles is

\[\tau : (g, \gamma) \rightarrow (g', \gamma') \]

where \(\tau \in G \) s.t.

\[\tau g(a) \tau^{-1} = g'(a) \quad \forall \ a \in \pi_1(X). \]

- An isomorphism of flat \(G \)-bundles is a pair

\[\psi : (g, \gamma) \rightarrow (g', \gamma') \]

- \(\psi \in \text{Fun}(\pi_1(X), G) \)

\[\psi(a) \quad \text{satisfies a natural compatibility condition involving} \]

\[g, \gamma', \alpha. \]

- In fact, flat principal \(G \)-bundles form a 2-category

\[\text{Bun}^b_G(X) = \text{Fun}(\pi_1(X), G_G) \]

\[\xrightarrow{\psi(a)} g \xrightarrow{\psi(a)} \]

\[\tau \]

\[\text{Bun}^b_G(X) = \text{Fun}(\pi_1(X), G_G) \]
Theorem: \(\text{Bun}^b_g(X) \) admits a natural right \(G \)-action, such that it is \(G \)-equivariant.

- Recall action of \(G \) on category \(\text{Bun}^b_g(X) \):

\[
F: G \rightarrow \text{Aut}(\text{Bun}^b_g(X)) \quad \text{monoidal functor.}
\]

\[
g \mapsto F_g
\]

\[
F_g(s) = g^{-1}sg,
\]

\[
F_g(t) = g^{-1}tg.
\]

\[
F(g,h): F_g \circ F_h \Rightarrow F_{gh}
\]

+ associativity condition for \(g,h,k \)

- We want to lift it to an action on the 2-category

\[\overline{F}: G \rightarrow \text{Aut}(\text{Bun}^b_g(X))\]

\[
g \mapsto \overline{F}_g
\]

\[
\overline{F}(g,h): \overline{F}_g \circ \overline{F}_h \Rightarrow \overline{F}_{gh}
\]

+ associativity data for \(g,h,k \)

+ associativity condition for \(g,h,k,l \).

E.g., \(\overline{F}_g : (g,x) \mapsto (g^3, gx) \)

Here \(g^3 : \pi_1(X) \rightarrow G \)

\[
\gamma(a,b) : g(a)g(b) \rightarrow g(ab)
\]

\[
\gamma(a,b,c) : g^{-1}(g(a)c)g \rightarrow g^{-1}(g(ab)c)g
\]

\[
\gamma(a,b) : g(a)g(b) \rightarrow g(ab)
\]

\[
g^{-1}(g(a)c)g \rightarrow g^{-1}(g(ab)c)g
\]

\[
\gamma(a,b,c) : g^{-1}(g(a)c)g \rightarrow g^{-1}(g(ab)c)g
\]

\[
g^{-1}(g(a)c)g \rightarrow g^{-1}(g(ab)c)g
\]

\[
\gamma(a,b) : g(a)g(b) \rightarrow g(ab)
\]

\[
\gamma(a,b,c) : g^{-1}(g(a)c)g \rightarrow g^{-1}(g(ab)c)g
\]

\[
g^{-1}(g(a)c)g \rightarrow g^{-1}(g(ab)c)g
\]

\[
\gamma(a,b) : g(a)g(b) \rightarrow g(ab)
\]

\[
\gamma(a,b,c) : g^{-1}(g(a)c)g \rightarrow g^{-1}(g(ab)c)g
\]

\[
g^{-1}(g(a)c)g \rightarrow g^{-1}(g(ab)c)g
\]
§ 4. CONSTRUCTING THE FREED-QUINN LINE BUNDLE.

What is the fibre of this functor Γ over g?

\[\{ (g, \gamma) \mid d\gamma = \frac{1}{g^*a} \} . \]

So if γ, γ' are in the fibre, $d\gamma = d\gamma'$

\[\Rightarrow \text{ they differ by a unique 2-cocyle.} \]

i.e. Fib_g is a $\mathbb{Z}^2(\pi_1(X); U(1))$

We take the quotient identifying $(g, \gamma), (g, \gamma')$ iff γ/γ' is

a coboundary

by performing an "associated bundle" construction

\[\text{Bun}_G^b(X) \xrightarrow{\mathbb{Z}^2 \times H^2} \text{ now has fibres } H^2(\pi_1(X); U(1)) \]

\[\text{U}(1) \]

Theorem: This $U(1)$-bundle agrees with the Freed-Quinn
line bundle \mathcal{L}.

Sketch of proof:

\[\begin{tikzcd}
\text{Bun}_G^b(X) \ar[r] \ar[dr] & U(1)/U(1) \\
\text{Bun}_G^b(X) \times H^2 \ar[u] \ar[r] & U(1)/U(1) \ar[u] \ar[ur]
\end{tikzcd} \]

Key lemma: \[[g, \gamma] = [g, \gamma'] \iff \int_X \gamma = \int_X g^*a \]

\[\text{FREED-QUINN} \]