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Abstract. We give a short proof for the Clebsch - Gordan decompositions

for the finite-dimensional modules over k[X].

1. The representation ring of k[X]: the primitive case

Let k be an algebraically closed field of characteristic zero. The structure of
finitely generated k[X] modules is well-known: a torsion-free module is free and an
indecomposable torsion module is isomorphic to Jk(µ,m) := k[X]/(X − µ)m for
some µ ∈ k and some natural number m. The modules Jk(µ, m) and Jk(µ′,m′)
are not isomorphic if (µ,m) 6= (µ′,m′). If the field k is fixed we shall simply write
J(µ,m). The isomorphism class of this module will be denoted [J(µ,m)] and the
image of this module in any representation ring of k[X] will be denoted [µ,m].

Viewed as a k-vector space, J(µ,m) has a standard basis {ei := (X−µ)i−1}i=1,...,m.
Since (X − µ)ei = ei+1 for all i ≥ 1 (assuming that em+1 = em+2 = . . . = 0), we
have that

Xei = µei + ei+1

for all i. Hence, in this basis, X acts on J(µ,m) as µ1m + Dm, where Dm is the
nilpotent operator sending each ei to ei+1.

Let C be the full subcategory of k[X]-mod consisting of modules which are finite-
dimensional over k. It is immediate that C is closed under isomorphisms, finite
direct sums, and the tensor product over k. Furthermore, by the structure theorem
for finite torsion modules over a PID, C has the Krull - Remak - Schmidt property.
Therefore, the representation ring R(C) is a free Z-module on the elements [µ,m].
Our goal in this section is to describe the multiplicative structure of the represen-
tation ring R(C) of k[X] corresponding to the primitive product A⊗ 1 + 1⊗B. In
the next section we shall solve the same problem for the Kronecker product.

Given k[X]-modules M := J(µ,m) with standard basis ei, i = 1, . . . ,m, and
N := J(n, ν) with standard basis fj , j = 1, . . . , n, we define an action of X on
M⊗k N by the matrix A⊗1+1⊗B, where A and B are the matrices corresponding
to M and N . In the basis ei,j := ei ⊗ fj , it is given by the operator

(µ1m + Dm)⊗ 1n + 1m ⊗ (ν1n + Dn) = (µ + ν)1mn + Dm ⊗ 1n + 1m ⊗Dn.

Here (µ + ν)1mn is the semi-simple part of the operator X : M ⊗N → M ⊗N and

(1.1) D := D′ + D′′ : ei,j 7→ ei+1,j + ei,j+1,

where D′ := Dm ⊗ 1n and D′′ := 1m ⊗Dn, is the nilpotent part of X. In short,

(1.2) Xei,j = (µ + ν)ei,j + ei+1,j + ei,j+1.
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Theorem 1. For µ, ν ∈ k and positive integers m ≤ n, the multiplication in R(C)
is given by the formula

[µ,m] · [ν, n] =
m−1∑
i=0

[µ + ν, n + m− 1− 2i].

Proof. We proceed by induction on m, keeping µ, ν, and n fixed. For m = 1 the
theorem is trivial. Suppose that m = 2. Using the basis (ei,j) defined above, we
introduce the vector subspaces

Mn+1 := 〈e1,j + (j − 1)e2,j−1〉j=1,...,n+1

and
Mn−1 := 〈e1,j − (n− j + 1)e2,j−1〉j=2,...,n

of J(µ, 2) ⊗ J(ν, n). Using formula (1.2), one checks that Mn+1 and Mn−1 are in
fact k[X]-submodules isomorphic to J(µ+ν, n+1) and, respectively, J(µ+ν, n−1).
It remains to show that they have a trivial intersection. As vector subspaces, both
submodules are graded by the index j. Therefore, it suffices to show that their
intersection is trivial in each degree. This is immediate since∣∣∣∣ 1 1

j − 1 − (n− j + 1)

∣∣∣∣ = −n 6= 0.

Now assume that the theorem is true for all values of m ≤ l − 1 and suppose that
l ≤ n. By the associativity of multiplication,

([ν, n] · [µ, l − 1]) · [0, 2] = [ν, n] · ([µ, l − 1] · [0, 2]).

By the induction assumption, the left-hand side equals
l−2∑
i=0

([µ + ν, n + l − 1− 2i] + [µ + ν, n + l − 3− 2i]),

whereas the right-hand equals

[ν, n] · [µ, l] +
l−3∑
i=0

[µ + ν, n + l − 3− 2i].

The desired result now follows. �

2. The representation ring of k[X]: the Kronecker product

In this section we shall describe the multiplicative structure of the representation
ring R(C) of k[X] corresponding to the Kronecker product. We continue to assume
that k is an algebraically closed field. In the notation of the previous section, given
k[X]-modules M := J(µ,m) with standard basis ei, i = 1, . . . ,m, and N := J(n, ν)
with standard basis fj , j = 1, . . . , n, we define an action of X on M ⊗k N by the
matrix of A⊗B, where A and B correspond to M and N . In the basis ei,j := ei⊗fj ,
is given by the operator

(µ1m + Dm)⊗ (ν1n + Dn) = (µν)1mn + µ1m ⊗Dn + νDm ⊗ 1n + Dm ⊗Dn.

Here (µν)1mn is the semi-simple part of the operator X : M ⊗N → M ⊗N and

D := D′ + D′′ + D′′′ : ei,j 7→ νei+1,j + µei,j+1 + ei+1,j+1,
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where D′ := Dm ⊗ 1n, D′′ := 1m ⊗Dn, and D′′′ := Dm ⊗Dn is the nilpotent part
of X. In short,

(2.1) Xei,j = (µν)ei,j + νei+1,j + µei,j+1 + ei+1,j+1.

Theorem 2. For µ, ν ∈ k and positive integers m ≤ n, the multiplication in R(C)
is given by the formulas:

(1) [µ,m] · [ν, n] =
∑m−1

i=0 [µν, n + m− 1− 2i] if µ 6= 0 and ν 6= 0,
(2) [µ,m] · [0, n] = m[0, n] if µ 6= 0,
(3) [0,m] · [ν, n] = n[0,m] if ν 6= 0,
(4) [0,m] · [0, n] = (n−m + 1)[0,m] + 2

∑m−1
i=1 [0, i].

Proof. We begin with case 1, when both eigenvalues are different from zero. Our
argument will again use induction on m, similar to the primitive case. If m = 1,
then Xe1,j = (µν)e1,j + µe1,j+1 and the vectors e1,1, µe1,2, . . . , µ

n−1e1,n form a
Jordan basis for [µ, 1] · [ν, n]. If m = 2, we introduce two vector subspaces Mn+1

and Mn−1 of J(µ, 2) ⊗ J(ν, n), defined as follows. The subspace Mn+1 is spanned
by the n + 1 vectors e1,1 and µi−1(iνe2,i + ie2,i+1 + µe1,i+1), i = 1, . . . , n. Since
both µ and ν are different from zero, this is a Jordan basis of length n + 1 with
eigenvalue µν. Therefore Mn+1 is a k[X]-submodule of J(µ, 2)⊗J(ν, n) isomorphic
to J(µν, n + 1). Notice that the socle of Mn+1 is spanned by e2,n. To define the
other subspace, Mn−1, we choose two scalars α, β ∈ k and take the linear span of
the vectors

gi := (αµi−1 + (i− 1)βνµi−2)e2,i + (i− 1)βµi−2e2,i+1 + βµi−1e1,i+1,

where i = 1, . . . , n − 1. We claim that a suitable choice of α and β will make
this system of vectors into a Jordan basis of length n − 1 with eigenvalue µν.
Indeed, Dgi = gi+1 for each i ≥ 1. Thus we only have to check that gn−1 6= 0 and
Dgn−1 = 0 for a suitable choice of α and β. Since µ 6= 0, to satisfy the first condition
it suffices to require that β 6= 0, as this would make the coefficient of e1,n in gn−1

different from zero. As Dgn−1(αµn−1 + (n− 1)βνµn−2)e2, n, the second condition
can also be satisfied by a suitable choice of α since µ 6= 0. Thus we can assume
that Mn−1 is a k[X]-submodule of J(µ, 2) ⊗ J(ν, n) isomorphic to J(µν, n − 1).
Notice that the simple socle of Mn−1 is spanned by gn−1, whose coefficient in e1,n

is different from zero. Therefore the socles of Mn+1 and Mn−1 do not intersect.
Thus the two submodules do not intersect, and we have that J(µ, 2) ⊗ J(ν, n)
is isomorphic to J(µν, n + 1) q J(µν, n − 1). The rest of the induction proof is
identical to the one given in the previous section. We now consider case 2: µ 6= 0
and ν = 0. In this case, for each i = 1, . . . ,m, we consider the vector subspace Mi

of J(µ,m)⊗ J(0, n) spanned by the vectors ei,1, Dei,1, D
2ei,1, . . . , D

n−1
i ei,1. Again

this is a k[X]-module. Its socle is a linear combination of the vectors ei,n, . . . , em,n

with the coefficient in ei,n being µn−1 6= 0. This observation has two consequences.
First is that the above vectors form a Jordan basis of length n and, therefore, Mi

is a nilpotent Jordan block of dimension n for each i = 1, . . . ,m. Secondly, the
socles of the Mi’s are pairwise distinct and, therefore,

∑m
i=1 Mi is a direct sum.

Comparing the dimensions we have that [µ,m] · [0, n] = m[0, n]. In case 3, the proof
is identical to the one just given. We now consider case 4: both µ and ν are zero.
Under this assumption, Dei,j = ei+1,j+1 for each pair of indices i and j. Direct
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examination now shows that: the vector subspaces Mj :=< e1,jDe1,j , . . . , D
me1,j >

, j = 1, . . . , n−m + 1 are Jordan blocks of length m, the vector subspaces Ni :=<
ei, 1, Dei,1, . . . , D

m−iei,1 >, i = 2, . . . ,m are Jordan blocks of length m − i + 1,
and the vector subspaces Pj =< e1,n−m+j , De1,n−m+j , . . . , D

m−je1,n−m+j >, j =
2, . . . ,m are Jordan blocks of length m− j +1. The desired result now follows. �

Remark 1. Without the assumption m ≤ n, there is no distinction between case
2 and case 3.
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