THE REPRESENTATION RINGS OF k[X]

ALEX MARTSINKOVSKY AND ANATOLY VLASSOV

ABSTRACT. We give a short proof for the Clebsch - Gordan decompositions
for the finite-dimensional modules over k[X].

1. THE REPRESENTATION RING OF k[X]: THE PRIMITIVE CASE

Let k& be an algebraically closed field of characteristic zero. The structure of
finitely generated k[X] modules is well-known: a torsion-free module is free and an
indecomposable torsion module is isomorphic to Ji(u,m) := k[X]/(X — p)™ for
some p € k and some natural number m. The modules Jy(p, m) and Jy(p', m')
are not isomorphic if (u,m) # (u',m’). If the field k is fixed we shall simply write
J(u,m). The isomorphism class of this module will be denoted [J(x, m)] and the
image of this module in any representation ring of k[X] will be denoted [u, m].

Viewed as a k-vector space, J (i, m) has a standard basis {e; := (X —p)" "' }ic1, . m.
Since (X — p)e; = e;41 for all ¢ > 1 (assuming that e, 11 = o = ... = 0), we
have that

Xe; = pe; +eiq1
for all . Hence, in this basis, X acts on J(u,m) as ul,, + D,,, where D,, is the
nilpotent operator sending each e; to e;41.

Let C be the full subcategory of k[X]-mod consisting of modules which are finite-
dimensional over k. It is immediate that C is closed under isomorphisms, finite
direct sums, and the tensor product over k. Furthermore, by the structure theorem
for finite torsion modules over a PID, C has the Krull - Remak - Schmidt property.
Therefore, the representation ring R(C) is a free Z-module on the elements [u, m].
Our goal in this section is to describe the multiplicative structure of the represen-
tation ring R(C) of k[X] corresponding to the primitive product A®1+1® B. In
the next section we shall solve the same problem for the Kronecker product.

Given k[X]-modules M := J(u,m) with standard basis e;,i = 1,...,m, and
N := J(n,v) with standard basis f;,j = 1,...,n, we define an action of X on
M ®; N by the matrix A®14+1® B, where A and B are the matrices corresponding
to M and N. In the basis e; ; := e; ® f;, it is given by the operator

(Wl + D) @1, + 1, @ (vl + D) = (w+v)ln + Dy @ 1, + 1, @ D,
Here (pu+ v) 1y, is the semi-simple part of the operator X : M @ N — M ® N and

(1.1) D:=D +D": €ij > €i+1,5 T €5 +1,
where D' :== D,, ® 1,, and D" :=1,, ® D,,, is the nilpotent part of X. In short,
(1.2) Xeij = (n+v)eij+eit1; +€ijr-
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Theorem 1. For p,v € k and positive integers m < n, the multiplication in R(C)
is given by the formula

[ay

[w, m] - [v,n] = i[u—i—um—i—m—l—?i].

Proof. We proceed by induction on m, keeping u, v, and n fixed. For m = 1 the
theorem is trivial. Suppose that m = 2. Using the basis (e; ;) defined above, we
introduce the vector subspaces

M1 :=(e1;+(J —Deaj—1)j=1,. n+1
and

Mp—1:=(e1; — (n—j+1)ezj-1)j=2,..n
of J(u,2) ® J(v,n). Using formula (1.2), one checks that M, 11 and M, _; are in
fact k[X]-submodules isomorphic to J(u+v,n+1) and, respectively, J(u+v,n—1).
It remains to show that they have a trivial intersection. As vector subspaces, both
submodules are graded by the index j. Therefore, it suffices to show that their
intersection is trivial in each degree. This is immediate since

1 1
j—1 —(n—j+1)

Now assume that the theorem is true for all values of m <1 — 1 and suppose that
I < n. By the associativity of multiplication,

(v, n] - [p, 0 =1]) - [0,2] = [, n] - ([, 1 = 1] - [0, 2]).
By the induction assumption, the left-hand side equals
1-2
Z([u+y,n+l—1—2i]+[u+y,n+l—3—2i]),
i=0
whereas the right-hand equals

=—-n#0.

1—
v,n] - [, ]+ ) [p+v,n+1—3—2i.
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The desired result now follows. O

2. THE REPRESENTATION RING OF k[X|: THE KRONECKER PRODUCT

In this section we shall describe the multiplicative structure of the representation
ring R(C) of k[X] corresponding to the Kronecker product. We continue to assume
that k is an algebraically closed field. In the notation of the previous section, given
k[X]-modules M := J(u, m) with standard basis e;,i = 1,...,m, and N := J(n,v)
with standard basis f;,j = 1,...,n, we define an action of X on M ®; N by the
matrix of A® B, where A and B correspond to M and N. In the basis e; ; 1= €;® f;,
is given by the operator

(1l + D) @ (W1, + Dy) = (u)1mn + plyy @ Dyy +vDp, @ 1,, + Dy, @ Dy,
Here (uv)1,,y, is the semi-simple part of the operator X : M @ N — M ® N and
D:=D +D'"+D": €ij > Veiy1 5 + Heij+1 + €it1,5+1,
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where D' .= D,, ® 1,,,D" :=1,, ® D,,, and D" := D,, ® D,, is the nilpotent part
of X. In short,

(2.1) Xeij = (uv)e;; +veir1; + Heijr1 + €it1 j+1-

Theorem 2. For p,v € k and positive integers m < n, the multiplication in R(C)
is given by the formulas:

(1) [g,m] - [v, n]:ZZ’;—Ol[uy,n—i—m—l—Qi} ifu#0andv #0,

[
(2) [m,m]-[0,n] = m[0,n] if n#0,
(3) [0,m] - [v,n] =n[0,m] if v #0, X
(4) [0,m]-[0,n] = (n—m+1)[0,m] +2>7"7[0,4].

Proof. We begin with case 1, when both eigenvalues are different from zero. Our
argument will again use induction on m, similar to the primitive case. If m = 1,
then Xey; = (uv)er; + per j+1 and the vectors ey 1, pers,...,u" ter, form a
Jordan basis for [u, 1] - [v,n]. If m = 2, we introduce two vector subspaces M, 1+1
and M,,_1 of J(u,2) ® J(v,n), defined as follows. The subspace M,,y; is spanned
by the n + 1 vectors e;,; and T 1(2V62 i +ieg i1 + pe1ir1),t = 1,...,n. Since
both p and v are different from zero, this is a Jordan basis of length n + 1 with
eigenvalue pv. Therefore M, 11 is a k[X]-submodule of J(u,2)® J(v,n) isomorphic
to J(uv,n + 1). Notice that the socle of M, is spanned by es,. To define the
other subspace, M,,_1, we choose two scalars «, 3 € k and take the linear span of
the vectors

gi = (ap ™"+ (i = DBvp'?)egi + (i = 1)Bp' e ip1 + Bu' er it

where ¢ = 1,...,n — 1. We claim that a suitable choice of @ and ( will make
this system of vectors into a Jordan basis of length n — 1 with eigenvalue pv.
Indeed, Dg; = g;4+1 for each i > 1. Thus we only have to check that g,—1 # 0 and
Dg,,_1 = 0 for a suitable choice of @ and 3. Since u # 0, to satisfy the first condition
it suffices to require that 3 # 0, as this would make the coefficient of e; ,, in g1
different from zero. As Dg,,_1(au™ ! + (n — 1)Bvu™"2)ea, n, the second condition
can also be satisfied by a suitable choice of « since p # 0. Thus we can assume
that M,,_1 is a k[X]-submodule of J(u,2) ® J(v,n) isomorphic to J(uv,n — 1).
Notice that the simple socle of M,,_; is spanned by g,,—1, whose coefficient in e; ,,
is different from zero. Therefore the socles of M, ;1 and M,_; do not intersect.
Thus the two submodules do not intersect, and we have that J(u,2) ® J(v,n)
is isomorphic to J(uv,n + 1) II J(pv,n — 1). The rest of the induction proof is
identical to the one given in the previous section. We now consider case 2: p # 0
and v = 0. In this case, for each i = 1,...,m, we consider the vector subspace M;
of J(u,m)® J(0,n) spanned by the vectors e; 1, De; 1, D?e; 1, .. ., Df_leM. Again
this is a k[X]-module. Its socle is a linear combination of the vectors e; ..., €mn
with the coefficient in e; , being u™~! # 0. This observation has two consequences.
First is that the above vectors form a Jordan basis of length n and, therefore, M;
is a nilpotent Jordan block of dimension n for each i = 1,...,m. Secondly, the
socles of the M;’s are pairwise distinct and, therefore, E:il M; is a direct sum.
Comparing the dimensions we have that [, m]-[0,n] = m[0,n]. In case 3, the proof
is identical to the one just given. We now consider case 4: both p and v are zero.
Under this assumption, De; ; = €41 41 for each pair of indices ¢ and j. Direct
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examination now shows that: the vector subspaces M; :=< ey jDey j,...,D™e; j >
,j=1,...,n—m+ 1 are Jordan blocks of length m, the vector subspaces N; :=<
ei,1,De;1,...,D™ ;1 >i = 2,...,m are Jordan blocks of length m — i + 1,
and the vector subspaces P; =< €1 n—m+j» De1n—m+js---s D™ I€1 nomij >,4 =
2,...,m are Jordan blocks of length m — 5 + 1. The desired result now follows. [

Remark 1. Without the assumption m < n, there is no distinction between case
2 and case 3.
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