Estimation from noisy images with the EM-algorithm

Andrey Nikiforov, Mikhail Maloutov
Northeastern University, Boston, Massachusetts. *

April 15, 1999

Abstract

The paper deals with the case when a series of noisy images is generated from a moving object or several objects. An estimation procedure is proposed that is based on the EM-algorithm. This procedure provides estimates of position, shape of the objects, and other parameters in applications.

1 Introduction

The problem addressed in this letter stems from the study of motion of band 3 protein molecule on the red blood cell membrane. Characterization of this motion is of large biological interest. A gold or latex bead of size 5 to 40 nm is attached to the molecule, and plane images (typically 128 by 80 pixels) are recorded at speed up to 10,000 per second to track molecules. Optical microscopy for such objects that are smaller than the resolution limit of visible light provides images of beads ("head spots"), that are often very noisy, have complex shape and are of sizes from 100 to 500 nm, that exceeds the desired accuracy of the head position estimate by order.

Heuristic thresholding or moment-based algorithms used by biologists, besides being inaccurate in strong noise, are heavily biased when head spots overlap and/or when a spot is too large or head is too close to the image edge to fit a spot into the image frame due to the limited view area of the microscope.

We propose a procedure based on the EM-algorithm that estimates the head position more accurately, and is optimal in a certain sense. The main idea of the approach is to estimate parameters relevant to the head spot generation using a series of images, and then to solve the inverse problem by establishing the most probable center coordinate for each image along with other characteristics (variances etc).

* Address for correspondence: 1st, 2nd et al., Chestnut Hill, MA 02467, USA. E-mail: anikiforov, mmaloutov.
The approach described is universal concerning problems of estimating object parameters like position or shape from series of noisy images or signals, when it is not possible to point out these parameters explicitly and "self-learning" is required.

2 Model

Consider the case of a single head on the image. Let \(f = (f_x, f_y) \) be bivariate integer index on the rectangular grid \(R \) with the diagonal \((1, 1) - (I_x, I_y)\). The head induces the intensity field \(h(f|a) \) on \(R \) that is parametrized by a vector parameter \(a \). Let \(a = (m_x, m_y, c) \), where \(m = (m_x, m_y) \) is a head "center", and \(m_x, m_y, d, c \) are positive real numbers. The function

\[
h(f|a) = \max(0, c - \|f - m\|^2/d^2)
\]

is used in the sequel. Here \(\|r\| \) stands for the Euclidian norm of the vector \(r \).

We observe a series of images at moments \(t = 1, \ldots, T \). The intensity in the point \(f \) at the moment \(t \) is assumed to be

\[
\epsilon_t(f) = h(f|a_t) + e_t(f),
\]

where \(e_t \) is the random parameter value at the moment \(t \), supposed to be distributed independently for all \(t \) with density function \(p(e|\theta) \), \(\theta \) being unknown parameter of this distribution. Let \(Z_t = (e_1(1, 1), \ldots, e_T(I_x, I_y)) \) denote the intensity field for the whole image at the moment \(t \).

To specify the model completely, suppose that \(e_t(f) \) is a random variable distributed normally \(N(0, \sigma^2) \) and independently for all \(t \) and \(f \). Let \(p(e|\theta) \) be the respective density function. Denote by \(\phi = (\theta, \sigma) \) the complete parameter set.

3 Problem

Given the set \(Z^T = (Z_1, \ldots, Z_T) \) of \(T \) images, we should evaluate the head position for each \(t \). In terms of (1), values of \(m_t, t = 1, \ldots, T \), are to be defined. It is also instrumental to get variance of the head position estimate.

For simplicity we suppose first that intensity function \(h(f|a) \) has a finite support \(S(f) \) (this is obviously true for (1)) and that for every \(t \) we have \(S(f) \in R \), i.e., each image contains the head spot completely.

4 Solution

We solve this problem in two steps. At the first step we estimate the parameter \(\phi \) using the EM-algorithm (Dempster et al., 1977). This is a statistical tool designed for maximum likelihood estimation when the data observed \(X_{obs} \) can
be described as a part of a complete data set \(X_{\text{complete}} = (X_{\text{obs}}, X_{\text{m}}, \ldots) \), where \(X_{\text{m}} \) is, at least formally, missing data subset.

For the problem specified, let us treat \(Z_\ell \) as observed data, and \(a_\ell \) as missing data. Therefore, the pair \((Z_\ell, a_\ell) \) is the complete observation at moment \(\ell \).

We use the superscripts "-" and "+" of \(\phi \) for the current and next iterations respectively. The general description of the EM-algorithm is as follows:

- **E-step.** Determine \(Q(\phi|\phi^-) \), where

 \[
 Q(\phi|\phi^-) = E \left(\log f(X_{\text{complete}} | \phi) \big| X_{\text{complete}}|\phi^- \right).
 \]

 Here \(E \) stands for conditional expectation over missing part of data, given \(\phi \).

- **M-step.** Determine \(\phi^- = \arg\max_{\phi} Q(\phi|\phi^-) \).

Following this general description and the treatment of the model accepted, we derive the EM-algorithm for our problem.

E-step. Due to independence of random variables \(e_\ell(\xi) \), we get:

\[
\log f(X_{\text{complete}} | \phi) = \prod_{\ell} \left(\log g(a_\ell | \phi) \prod_{i} v_i(\phi) - k(\xi | \phi) \right),
\]

where summation and multiplication over \(i \) hereafter denote the respective operations over all elements of the rectangular grid \(E_\ell \) and

\[
Q(\phi|\phi^-) = \sum_{\ell} \sum_{a_\ell} \mu(a_\ell | Z_\ell, \phi^-) \left(\log g(a_\ell | \phi) - \sum_{x_\ell} \left[\log p(x_\ell | \phi) + (x_\ell - \mu(\xi | a_\ell))^2 / (2\sigma^2) \right] \right) da_\ell,
\]

where \(\mu(a_\ell | Z_\ell, \phi^-) \) is the posterior probability of \(a_\ell \) to be observed, given \(Z_\ell \) and parameter value at the previous iteration. This probability is calculated from the Bayes formula:

\[
\mu(a_\ell | Z_\ell, \phi^-) = \frac{\mu(Z_\ell | a_\ell, \sigma)g(a_\ell | \phi)}{\mu(Z_\ell | \phi)},
\]

where the denominator is the normalising function and \(\mu(Z_\ell | a_\ell, \sigma) \) in our model is

\[
\mu(Z_\ell | a_\ell, \sigma) = \prod_{i} v_i(a_\ell) - k(\xi | a_\ell | \sigma),
\]

M-step. Maximizing \(Q(\phi|\phi^-) \) over \(\phi \), we get:

\[
(\phi^-) = \frac{1}{I_\ell J_\ell F} \sum_{a_\ell} \int \mu(a_\ell | Z_\ell, \phi^-) \sum_{i} (x_\ell(i) - \mu(\xi | a_\ell))^2 da_\ell,
\]

3
\[\theta^- = \arg \max_{\psi} \sum \int p(a|Z_k, \psi^-) \log g(a|\theta)da. \] (6)

Finally, having the maximum likelihood estimate \(\hat{\theta} \) from the EMM algorithm, (4) is the conditional density of a given \(Z_k \), whereas we can evaluate \(\sigma \) for each \(t \) by, say, mean or bivariate median of the distribution \(p(a|Z_k, \hat{\theta}) \), according to the goals of subsequent analysis. Moreover, this density function provides variance or any other reasonable statistics describing accuracy of our evaluation.

5 Extensions

The EMM algorithm lets successfully handle more complex cases. First, we discuss a modification required to handle observations of multiple (say, \(K > 1 \)) heads on an image. Physics of the experiments provides nonlinear generalization of single-head model (2). The model

\[s_k(\hat{\theta}) = H(\hat{\theta}|A_k) + s_k(\hat{\theta}) \] (7)

is adequate, where \(A_k = (a_k^1, \ldots, a_k^K) \), \(a_k^k \) is the intensity function parameter for the \(k \)-th head, and \(H(\hat{\theta}|A_k) = \max \{ h(\hat{\theta}, a_k^1), \ldots, h(\hat{\theta}, a_k^K) \} \). Generalization of the problem as one involving incomplete data is obvious. The parameter set is \(\phi = (\hat{\theta}_1, \ldots, \hat{\theta}_K, \sigma) \). Assuming independence of random vectors \(a_k^k \) in both \(t \) and \(k \), we should replace equation (3) by

\[f(x_{mm, jk} \mid \phi) = \prod_k \left(\prod_{\hat{\theta}} \left(\prod_{a_k} p(a_k^k|\hat{\theta}^k) \prod_{\hat{\theta}} n(a_k^k - H(\hat{\theta}|A_k)|\sigma) \right) \right), \]

and, further, (5) by

\[(\sigma^k)^- = \frac{1}{\sum_{Z_k} \int \cdots \int g(A_{\hat{\theta}}|Z_k, \phi^-) \sum_{\hat{\theta}} \sum_{a_k} (a_k^k - H(\hat{\theta}|A_k))^2 da_k \ldots da_k}, \] (6)

and (6) by

\[\hat{\theta}^- = \arg \max_{\psi} \sum \int \cdots \int p(A_{\hat{\theta}}|Z_k, \phi^-) \sum_{\hat{\theta}} \sum_{a_k} \log p(a_k^k|\hat{\theta}_k)da_k \ldots da_k, \] (9)

where \(\hat{\theta} = (\hat{\theta}_1, \ldots, \hat{\theta}_K) \) and \(p(A_{\hat{\theta}}|Z_k, \phi) \) is an obvious generalization of (4). Note, that (9) factorizes into \(K \) separate equations, and (8) invokes multiple integration only for those heads that have overlapping spots. Two-heads overlapping is observed at only 10% of images, and three-heads overlapping is extremely rare.

Next, use of the EMM algorithm for truncated data is common, and the treatment of the case when head spots do not fit into the image frame is simple: include unobserved part of the intensity field into missing data component \(x_{mm, jk} \).

We omit the respective modification description.
Finally, modeling function (1) is oversimplification of the intensity field. More complex models can be used in our algorithm. Nevertheless, (1) provides good fit in a small area around the head center that was good in our analysis.

Acknowledgment. We are grateful to professors D. Golan, D. Brooks and B. Shafai for helpful discussions. The work was performed under grant 113322 of ERC Center at NEL.

References