The amn’t gap, ineffability, and anomalous aren’t:
Against morphosyntactic competition

John Frampton
Northeastern University

In “Explaining Morphosyntactic Competition” (2001), Bresnan claims that certain irregularities in the system of negative auxiliary verbs in English provide evidence that grammaticality must be determined by the methods of Optimality Theory, with lexical and syntactic choices competing in an essential way. The aim of this paper is to provide a derivational analysis of the irregularities, in which syntax precedes morphology, and to show that this analysis is superior to Bresnan's analysis in several respects. We begin by examining the phenomenon.

1. The amn’t gap and anomalous aren’t
Most of the tensed auxiliary verb forms in English have a corresponding negative form, whose phonological form is predictable from that of the non-negative form. The suffix -nt is concatenated to the non-negative form. Tag questions nicely display both forms.

(1) a. He is happy, isn't he?
    b. They are happy, aren't they?
    c. He had gone, hadn't he?
    d. I could go, couldn't I?

There is some irregularity. A few modals undergo stem readjustment of the kind familiar from the past tense of irregular verbs (won’t, not willn't, and a vowel change in don't). A complete inventory and careful discussion is found in Pullum and Zwicky (1983), who insightfully conclude that -nt is a suffix, not a phonologically reduced form of not. They support this conclusion by giving evidence that affixal negation is widespread among the world's languages.

There are two gaps in the inflectional paradigm in many dialects. The modal may has no negative form in most dialects.

(2) *He may go, mayn't he?

The other gap in the paradigm is the more prominent; there is no negative form of am. There has been a great deal of variation in the negative form of am historically, and regional and class based differences continue to flourish. Various irregular forms are found, with ain't widespread. But in many dialects, there is a gap and, like the modal may, there simply is no negative form.

Among those dialects in which there is no negative form of am, many fill it in interrogative contexts with “anomalous aren't.”
(3)  
a. I am going, aren't I?
b. *[I aren't going.]
c. *[I are going.]
d. *Are I going?

It is anomalous, in that *are otherwise never occurs in 1sg contexts, as shown by (3b-d).

The problem is to account for the appearance of anomalous *aren't—without also predicting *I aren't happy.

2. Bresnan's analysis

Bresnan starts from the plausible intuition that *aren't tall is ungrammatical because I am not tall is a better alternative, but interrogative aren't I tall is acceptable because there is no better alternative. In order to transform the intuition into an analysis, a theory is needed in which the notions “better” and “alternative” are defined. Since Bresnan follows Pullum and Zwicky in assuming that *aren't tall and its presumed competitor I am not tall have different syntactic structures, lexical choices in two different syntactic structures must therefore be compared.

Bresnan develops her analysis of anomalous *aren't in the framework of a morphosyntactic Optimality Theory. But it will be simpler for our purposes to explain her idea in more familiar terms. Suppose there is a deep structure \( \alpha \) from which one can derive either the representation (4a) of she isn't tall or the representation (4b) of she is not tall. Lexical Functional Grammar (LFG), which Bresnan assumes, provides deep structures at the requisite level of independence from syntactic structure.

(4)  
a. [ |she| [ {<be>,3,Sg,Pres,Neg} |tall| ] ]  
b. [ |she| [ [ {<be>,3,Sg,Pres} Neg ] |tall| ] ]

Syntactic terminal nodes are assumed to be distinct from the vocabulary items which associate with those nodes. Only the crucial syntactic nodes are given in detail in (4). The notations |she| and |tall| are used above as shorthands which denote the bundles of syntactic features which are realized by vocabulary items with sounds she and tall. The notation <be> identifies the root in question without singling out a particular form or providing phonological form. Phonology is only introduced by the lexical items which associate with the syntactic nodes.

Suppose the relevant vocabulary items for present tense be are:

(5)  
1. [ [ am / <be>,1,Sg,Pres ]] (missing)  
2. [ [ is / <be>,3,Sg,Pres ]]  
3. [ [ are / <be>,Pres ]]  
4. [ [ isn't / <be>,3,Sg,Pres,Neg ]]  
5. [ [ aren't / <be>,Pres,Neg ]]
Each vocabulary item is a pairing of phonological form and a bundle of syntactic features. There is no negative form of am. Additionally, the vocabulary item \([ not / \text{Neg} ]\) is used to realize free Neg.

Bresnan assumes that the vocabulary items must match the root, tense, and (if one is present) Neg features of the syntactic node.\(^2\) With respect to \(\phi\)-features, she assumes that if a perfect match is not possible, then the vocabulary item with the least \(\phi\)-specification is chosen. I call this “retreat to the least marked” and return to a more detailed discussion of the principle in Section 4. Application of these principles of lexical choice to (4) yields:

(6)  
   a. She isn't tall.  
   b. She is not tall

Because syntactic principles block phrasal movement to Comp, the interrogative version of the deep structure which underlies (4) yields only:

(7) \([ \{<\text{be}>,3,\text{Sg},\text{Pres},\text{Neg}\} \ [ |\text{she}| \ |\text{tall}| ] ]\)

Vocabulary choice then yields:

(8)  Isn't she tall?

Now consider the 1sg versions of declarative (6a,b) and interrogative (8).

(9)  
   a. \([ |I| \ [ \{<\text{be}>,1,\text{Sg},\text{Pres},\text{Neg}\} \ |\text{tall}| ] ]\)  
   b. \([ |I| \ [ [ \{<\text{be}>,1,\text{Sg},\text{Pres}\} \ \text{Neg} ] \ |\text{tall}| ] ]\)  
   c. \([ \{<\text{be}>,1,\text{Sg},\text{Pres},\text{Neg}\} \ [ |I| \ |\text{tall}| ] ]\)

Vocabulary choice for the syntactic structures (9) yields:

(10)  
   a. I aren't tall.  
   b. I am not tall.  
   c. Aren't I tall?

Since a perfect \(\phi\)-match for \(\{<\text{be}>,1,\text{Sg},\text{Pres},\text{Neg}\}\) is not available, retreat to the least marked selects \([ are / <\text{be}>,\text{Pres} ]\).

Bresnan's idea is to rule out (10a) by comparing how well (10a) lexically realizes (9a) with how well (10b) lexically realizes (9b). The comparison she proposes is the number of syntactic terminal nodes whose associated lexical items do not fully realize the node’s syntactic features. The fewer such syntactic terminal nodes the better. The relevant principle declares a representation (with lexical assignments) to be ungrammatical if there is another representation (also
with lexical assignments) derived from the same deep structure which has fewer syntactic terminal nodes with unmatched features. This principle makes (10a) ungrammatical, as desired.

We can see how this approach realizes Bresnan's intuition. Since the deep structure underlying (10c) produces no other surface structures, (10c) is grammatical in spite of the fact that (10c) lexically realizes (9c) as poorly as the ungrammatical (10a) lexically realizes (9a). The reason that (10c) is grammatical is that there is no alternative. The ungrammatical (10a), on the other hand, has an alternative with a better lexical realization.

This analysis gets the synchronic facts right. But it gives a poor diachronic account of the introduction of anomalous aren't into the language. It predicts that the exclusion of amn't from the vocabulary should automatically and seamlessly lead to the emergence of anomalous aren't. But this does not correspond to the diachronic facts.

The most thorough discussion of the question that I know of is an article by Francis (1985, “Amn't I, or the hole in the pattern”) which is devoted to detailing the solutions to the problem which have been arrived at in English dialects. At the level of educated speech, which is the dialect I have been discussing, he describes the situation as follows:

Americans have the same problems as Britons—perhaps a more serious one, since they are less likely to accept aren't I. What it comes to is that amn't is phonologically impossible, aren't I is ungrammatical, am I not is overly formal, and ain't I is substandard. Most RP [British Received Pronunciation] speakers do indeed use aren't I, as do some Americans (including the author), but many are uncomfortable with this usage and some even ridicule it. But the standard allows no wholly satisfactory solution on either side of the Atlantic.

Francis also quotes Quirk, et al. (1972):

As there is no contracted form of I am not, I'm not coming has no alternative [parallel to he isn't coming]. Another consequence of this gap is that there is no universally accepted colloquial question form corresponding to the stilted Am I not beautiful? The contraction aren't is sometimes substituted (especially in British English), but with some feeling of awkwardness: Aren't I beautiful? In American English, ain't has considerable currency in both declarative and interrogative use. (1972: 375)

If these descriptions are at all accurate, it is clear that anomalous aren't is not an automatic response to the exclusion of amn't.

2.1 Paradigm gaps
The diachronic facts make the analysis dubious to begin with, but embedding it in a comprehensive OT morphosyntax is even more dubious. Bresnan assumes that
LFG provides well-formed deep structures and that surface syntactic structure and lexical choice are determined in the usual OT fashion by a ranked list of penalty functions (non-negative integer valued functions) on multi-layered representations. Lexico-syntactic realizations of a given deep structure compete and the optimal realizations specify the grammatical surface structures corresponding to each well-formed deep structure. The analysis of anomalous *aren't* sketched above is incorporated into this system by assuming that one of the penalty functions is the count of syntactic terminal nodes whose features are not fully realized.

A virtue of this analysis is supposed to be that it automatically handles gaps in inflectional paradigms (missing vocabulary items) by generating periphrasis when alternate syntactic structure is less undesirable than badly matched lexical choice. Every well-formed deep structure must produce a grammatical output. The optimal realizations of a well-formed deep structure are grammatical, even if they are the best of a very bad lot. This makes the wrong prediction. Some gaps in inflectional paradigms alternate with periphrasis. But some inflectional paradigms have gaps that are not filled with periphrasis.

In my own ideolect, there is a paradigmatic gap (underlined) in each of the (11) examples which is not filled in any obvious way. There is ideotypical and dialectical variation, but these judgements are not unusual.

(11)  a. Jack may go to the party, *mayn't* he?
    b. He doesn't remember that I *foregoed/forewent* my vacation last year.
    c. If I had *stridden/strided/strode* into the room, I would have made a better impression.

There is no -nt form of *may*; *forego* has no past tense form; and *stride* has no past participle. These gaps are not filled by periphrasis. This shows that there are some deep structures which are ineffable (i.e. unsayable). Of course, one might claim that these gaps exist at the deep structure level. But such stipulations make principled explanation impossible.

3. A derivational analysis
The key syntactic assumptions are diagrammed in (12).

(12)
Auxiliary verbs raise to Tns (Tense, or Inflection), over Neg if it is present. Finite Tns attracts Neg, obligatorily in most modern dialects of English.\(^4\) Crucially, Neg attraction follows obligatory Aux raising, so that the structure of the complex head which is produced is (13), with Neg outside Tns.

(13) \([\bbrack{}\text{Aux Tns}]\text{Neg}\bbrack{}\]

In interrogatives, there is further raising to a Q complementizer, producing (14) if Neg has been attracted:

(14) \([[brack{}\text{Aux Tns}]\text{Neg}]\text{Q}\bbrack{}\]

Morphology converts complex heads formed in syntax into phonological objects. I adopt the point of view of Distributed Morphology (Halle and Marantz, 1993) and suppose that, in the core case, the syntactic terminal nodes which constitute complex heads are converted directly into pieces of phonology. The realization rules relevant to present tense be are:

(15) 1. \(<\text{be}> \rightarrow\text{am} / _{1,\text{Sg},\text{Pres}}\)
2. \(\rightarrow\text{i} / _{3,\text{Sg},\text{Pres}}\) (i is the vowel of is)
3. \(\rightarrow\text{are} / _{\text{Pres}}\)
4. Neg \(\rightarrow\text{-nt}\)
5. \(\rightarrow\text{not}\)
6. Pres \(\rightarrow\text{-s,z} / _{3,\text{Sg}}\)
7. \(\rightarrow\text{-∅}\)

The verb be is highly suppletive, with 3 present tense root allomorphs. The surface form is = i + z is a combination of the i root allomorph and the regular 3sg present inflectional suffix, -z. Neg is converted to the suffix -nt word internally, otherwise into not. The 3sg s/z-alternation is phonologically determined, with the voiceless alternate following voiceless phonemes.

Realization employing the rules (15) proceeds from the root out. The derivations of isn’t and aren’t are illustrated below:

(16)  a. \([\bbrack{}<\text{be}> \{3,\text{Sg},\text{Pres}\}]\text{Neg}\bbrack{}\]
      \(\downarrow\downarrow\downarrow\)
      1 -z -nt

(17)  b. \([\bbrack{}<\text{be}> \{3,\text{Pl},\text{Pres}\}]\text{Neg}\bbrack{}\]
      \(\downarrow\downarrow\downarrow\)
      are -∅ -nt
This system must be refined in two ways. First, since Tns obligatorily attracts Neg, and Neg is realized as the suffix -nt word internally, there is no way to produce *he is not tall* (with a sentential negation reading). Second, *amn't* is produced.

First, consider the alternation between *is not* and *isn't*. The operation of spelling out syntactic structure linearizes syntactic heads. If Neg is attracted to Tense, the linear structure, before morphological conversion, is (18). The traces of Neg and <be>, which have raised to Tns, are indicated in parenthesis.

\[(18) \ldots [[<\text{be}> \text{Tns }] \text{Neg }] (\text{Neg}) (<\text{be}>) \ldots\]

I assume that Neg can optionally be realized in the position of the trace, under the condition of linear adjacency. This yields the alternation between *is not* and *isn't* in non-interrogative contexts but predicts that only *isn't* is possible in Comp, because linear adjacency does not hold if Tns has raised to Comp over the subject.

Next, the cause of the *amn't* gap must be specified. The morphemes which make up a complex word are converted starting at the root and proceeding outwards. It cannot be the case that *<be> → am* is blocked in the context __Neg, because this would block *am not* along with *amn't*. I therefore suppose that the *amn't* gap is due to the fact that *Neg → -nt* is blocked in the context *am__*. It is immaterial here whether this is viewed as a constraint on rule application or as a modification of the rule which converts Neg to -nt. It is stated in (19) as a constraint on rule application. It affects only the realization rule (15.4).

\[(19) *-nt / am__\]

Since word internally Neg can only be converted to the suffix -nt, and conversion is root out, the result is that Neg in the interrogative (20) cannot be realized either word internally or in the position of its trace.

\[(20) \quad [[[<\text{be}> \{1,\text{Sg},\text{Pres}\}] \text{Neg}] Q] \]

Realization in the position of the trace is impossible because linear adjacency does not hold. Realization word internally is impossible because realization of (20) begins with conversion of *<be>* to *am*, setting up a context in which realization of Neg by -nt is blocked. Under the plausible assumption that Neg is privileged and must be realized, (20) is ineffable.⁵ As I read the diachronic record, this corresponds to the state of the language in the wake of the introduction of the *amn't* gap into the I-language. Anomalous *aren't* was not automatic. Some further change in the I-language was needed to allow anomalous *aren't* to surface.

We now address the question of how and why the I-language was modified to allow *aren't I tall*. Functional considerations are relevant, but in a very different way than Bresnan proposes. There is no online imperative for the grammar to
realize the deep structure corresponding to aren't I tall, as there is in Bresnan's proposal. Recall that it was this aspect of her proposal that lead to the untenable conclusion that well-formed deep structures always have a grammatical realization. The grammar proposed here is not driven by functional imperatives, but by formal rules.

There is, however, functional pressure to alter the grammar (i.e. the I-language) so that sentences like I'm tall, amn't I are sayable in some form. The metaphor of a patch to a software program is useful. The relevant question is: Is fixing the functional deficit worth the bother? Recall that English manages to survive quite well without a negative form of may, a past tense of forego, and past participle of stride. These are hardly serious problems. While we have no firm criteria for judging the relative significance of various functional gaps, I assume that the functional gap created by the introduction of the amn't morphological gap is more significant and would be patched if the cost is not high. Still following the metaphor of fixing a bug in a software program, one obvious criterion for a patch is that it remove the functional deficit with minimal changes in the operation of the program in those domains in which the program is already working properly.

What patches are available? The two simplest possibilities are given in (21). Since the problem is that am is blindly inserted in contexts in which it dooms Neg to nonrealization, blocking am-insertion in those contexts is an obvious place to begin. The two constraints on rules in (21) are the simplest possibilities, with (21a) favored by simplicity.

\[
\begin{align*}
(21) & \quad \text{a. } *am / \_ \_ \text{Neg} \\
& \quad \text{b. } *am / \_ \_ \text{Neg,Q}
\end{align*}
\]

Although (21a) is favored by simplicity, it is repeatedly discouraged because it judges sentences like I am not tall (sentential negation) to be ungrammatical, violating the condition that the patch leave functioning parts of the language unchanged as much as possible. The constraint (21b), on the other hand, has an effect only on previously ineffable complex heads. Anomalous aren't is produced as follows:

\[
\begin{align*}
(22) & \quad [[[ <be> \{1,\text{Sg,Pres}\} ] \text{Neg} ] \text{Q} ] \\
& \quad \downarrow \quad \downarrow \quad \downarrow \\
& \quad \text{are} \quad -\varnothing \quad -\text{nt}
\end{align*}
\]

The realization rule (15.1) is blocked by (21b). The conditions for applying (15.2) are not satisfied. So (15.3) applies and realizes <be> to are. As far as I can see, the constraint (21b) is the simplest modification of the I-language which both removes the functional deficit and preserves the grammatical sentences of the original language (am not sentences in particular).
Is there a mechanism by which functional pressure could be exerted to modify the I-language in a purposeless way so that we can get past the metaphor of “functional pressure.” It may be possible to take a step in this direction by adopting Yang’s (2000) idea that I-language should be considered as a statistical ensemble, with probabilities attached to language particular principles and rules. Suppose we imagine such an I-language L in the linguistic environment produced by speakers who have acquired the prohibition against amn’t, but whose I-languages do not fill the resulting functional gap. Suppose \( \rho_1 \) is the probability of *am/__Neg,Q (henceforth R_1) in L and \( \rho_2 \) is the probability of *am/__Neg (henceforth R_2) in L. What factors cause \( \rho_1 \) and \( \rho_2 \) to grow and what factors cause them to decrease? The dominant factor, of course, is the linguistic environment. There is plenty of evidence in the linguistic environment that discourages R_2 (i.e. causes \( \rho_2 \) to decrease). Every am not (sentential negation) sentence is inconsistent with R_2, so R_2 is constantly discouraged. Crucially, the linguistic environment is entirely neutral about \( \rho_1 \). Are there any factors outside the external linguistic environment which might cause \( \rho_1 \) to grow? It is not unreasonable to suppose that successfully exercising R_1 causes \( \rho_1 \) to increase even in the absence of external linguistic data. If something like this is true, then there is a source of functional pressure in the mind (pressure which is “mindless” in the standard sense of the word) for the innovation of R_1 in the I-language. There is a rough correlation between the intuitive idea of the “strength” of the functional pressure to innovate some R (i.e. increase its probability) and the frequency with which R is successfully exercised. One might imagine some patch which would allow mayn’t to surface, but it would only rarely be called on, perhaps never crossing a requisite threshold to rise out of the background fluctuations in the I-language.

3.1 Hawick Scots

Hawick Scots, also discussed by Bresnan (from whom the data below is taken), provides an interesting contrast with the dialect discussed above. There is one syntactic difference; Neg attraction is optional, not obligatory. There are a number of morphological differences. Free Neg is realized as no. When Neg is attracted, but realized in the position of the trace, it is realized as the phonological clitic nae. There is no amn’t gap in Hawick Scots. Finally, realization of Neg as a clitic takes precedence over realization as a suffix. This produces the following paradigm below. The paradigms for the other \( \phi \)-features are entirely parallel.

\[
\begin{array}{ll}
(23) & a. \text{I am no happy.} & d. \text{Am I no happy?} \\
& b. \text{I amnae happy.} & e. \text{*Amnae I happy?} \\
& c. \text{*I amn't happy.} & f. \text{Amn't I happy?}
\end{array}
\]

Since realization as a clitic takes precedence over realization as a suffix, (23c) is blocked. If Neg is not attracted to Tns, the interrogative yields (23d). This differs
from standard English, because Neg attraction is obligatory in standard English. Realization of Neg in the position of the trace is blocked if Neg has been attracted to Tns and Tns has raised to Q, because linear adjacency no longer obtains, so (23e) is ruled out and (23f) surfaces.

4. Descending specificity versus “retreat to the least specified”
Distributed Morphology (among other theories) orders realization rules according to descending specificity. If the environment in which Rule 1 applies properly contains the environment in which Rule 2 applies, then Rule 1 is ordered after Rule 2. Interestingly, the principle of descending specificity for associating vocabulary items with syntactic terminal nodes has no natural correlate in OT systems. OT cannot directly compare two competing vocabulary items. The structure of the theory is such that only penalties associated with vocabulary choice can be compared, not the vocabulary items themselves. Bresnan is therefore forced to adopt a different method for choosing between vocabulary items. She only considers the problem for φ-features, but even in this limited domain the solution which is proposed is inadequate. Her idea is that if there is no vocabulary item which fully matches φ-features, then the least specified vocabulary item is chosen. Earlier I called this principle “retreat to the least specified.” Specifically, vocabulary choice with respect to φ-features is controlled by the penalty functions:

(25) 1. Count of syntactic terminal nodes with unmatched φ-features
2. Count of φ-features of vocabulary items.

This is adequate for present tense be. The 1sg and 3sg present forms am and be are fully specified for φ-features and are is unspecified for φ-features.

But we do not have to go far from present tense be to find a problem. Consider the past tense be paradigm.

(26)

<table>
<thead>
<tr>
<th></th>
<th>Sg</th>
<th>Pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>was</td>
<td>were</td>
</tr>
<tr>
<td>2</td>
<td>were</td>
<td>were</td>
</tr>
<tr>
<td>3</td>
<td>was</td>
<td>were</td>
</tr>
</tbody>
</table>

A single vocabulary item cannot (perfectly) match the φ-features of both the 1s and 3s slots simultaneously. Nevertheless, the less specified were is not chosen. Adopting Bresnan's algorithm means that the six vocabulary items below are required for past tense be.
The simplest DM account of the vocabulary items which yield the paradigm employs Bonet’s (1991) idea of post-syntactic modification of syntactic terminal nodes prior to lexical realization, which is developed as the theory of “impoverishment” in Halle (1997). Impoverishment rules can delete certain features prior to lexical realization. The required impoverishment rule in this case is:

\[(28) \quad \text{Sg} \rightarrow \emptyset / \text{<be>}_{2}\]

There is no need to restrict this impoverishment to past tense.

The vocabulary items are then:

\[(29) \begin{align*}
1. \quad & \text{<be>} \rightarrow \text{was} / _{-}\text{Sg},-\text{Pres} \\
2. \quad & \text{were} / _{-}\text{Pres}
\end{align*}\]

Both allomorphs select the \(-\emptyset\) past tense suffix, as do about 100 other verb stems (\textit{put}, \textit{beat}, \textit{sing}, etc.). Only two vocabulary items are required. Bresnan’s system requires six, which is extravagant in terms of system resources. More importantly, the bloated vocabulary makes the regularities in the paradigm accidental. Side conditions can stipulate the regularities, but offer no explanation for them. From the standpoint of Distributed Morphology, the fact that all the negative forms have the same ending is the default expectation. The fact that the 1sg and 3sg forms are both \textit{was} is a consequence of the fact that it is the same vocabulary item. In Bresnan's system it is accidental homophony.

Impoverishment is no help in simplifying the vocabulary in Bresnan's system. Crucial to the simplification is the ability of a vocabulary item other than the least marked one to realize multiple \(\phi\)-feature configurations. It should also be noted that there is little reason to believe that it is a quirky or accidental fact about English that it happens to have two homophonous vocabulary items to realize the 1sg and 3sg past tense slots. The identity of the 1sg and 3sg forms in non-present tense paradigms is widespread in the Germanic languages for regular suffixal inflection, irregular verbs, and suppletive verbs.

Finally, it should be noted that it is possible to revise the penalty functions used in pairing vocabulary items with syntactic terminal nodes to bring it more in line with the idea of descending specificity. The following penalty functions, with the specified ranking, gives a better approximation to descending specificity:
The penalty functions (30) run directly counter to Bresnan's idea of a retreat to the least specified, but they do give the correct results for both present and past tense *be*. The penalties (30) essentially choose the vocabulary item which matches as many features as possible, provided it has no features that the terminal node does not. They allow a single vocabulary item with exponent *was*. Although the predictions of (30) largely agree with the predictions of the principle of descending specificity, they are not identical to it. It remains to be seen if there are empirical facts which can distinguish the two matching algorithms.\footnote{5}

5. Conclusions
At the level of explanation of the anomalous *aren’t* phenomenon, Bresnan’s analysis incorrectly predicts an automatic surfacing of anomalous *aren’t* as a consequence of the prohibition against *amn’t*. When the leading idea is embedded in a general theory of morphosyntactic competition, the incorrect prediction is made that inflectional paradigms do not result in ineffable deep structures.

The particular conception of morphology which Bresnan adopts, in which affixes are not the realization of independent syntactic nodes, determines the direction in which her analysis leads. Criticism of the analysis should therefore be taken as criticism of this view of morphology and support for the idea that the surface form of inflected words is computed from multiple syntactic morphemes using an affixal vocabulary.

It is generally agreed that functional considerations have an impact on language. Consideration of the difference between the way functional considerations entered Bresnan’s analysis and the way in which they entered the derivational analysis is instructive. Suppose we agree that minimization of ineffability is a functional desideratum. Bresnan’s approach is to locate satisfaction of the desideratum in the design of UG itself. The derivational approach takes both UG and I-language to be dumb mechanism and locates the impact of the desideratum in language change. UG makes an array of possible I-languages available. Tight clusters of I-languages form, called “languages,” distributed among the minds of speakers in language communities.\footnote{8} Languages change over time for multiple reasons. One of the factors which influences language change is the desideratum of eliminating ineffability. This produces some pressure for ineffability to be eliminated from I-languages. But it is only one of many factors which shape language change.

Finally, as a methodological point, it is worth recalling that Bresnan’s starting intuition that *aren’t I* surfaces because it has no competition is entirely plausible. But it is incorrect. The lesson is that what seems like competition is not necessarily competition.
Endnotes

1 Thanks to Sam Gutmann, Morris Halle, and Alec Marantz for helpful discussion. Thanks also to the audience at CLS 37 for their comments and questions.

2 This is an oversimplification, harmless for present purposes. Bresnan actually only imposes “high ranked constraints” against failure to realize the root, tense, and Neg.

3 See Halle (1973) for an excellent early discussion of ineffability and how it should be integrated into generative syntax.

4 The term “attract” is consistent with the usage of the Minimalist Program, but its use here was anticipated by Emonds (1985:210).

5 Bresnan also assumes that Neg is privileged, at least compared with $\phi$-features. The constraint favoring Neg realization is highly ranked.

6 Alice Davison pointed out to me that Morgan (1972) refers to some minor agreement rules that compensate for deficits in the syntactic agreement rules in conjunction contexts as “patches.”

7 Formally, they are easy to distinguish. If two vocabulary items which have the feature sets \{A,B\} and \{C\} are in competition to match \{A,B,C\}, descending specificity does not rank them, but (30) choses the one with feature set \{A,B\}.

8 See Yang (2000) for a compelling argument that I-language itself, language as it exists in the minds of members of a language community, should be viewed as a statistical ensemble of possibilities determined by UG.

References


